Groups of Polynomial Growth Learning Seminar

J. Flynn

Mondays 1:30 pm - 2:30 pm

Outline

I) Setting

II) Setting

III) Some Lesults

IV) Basic Lie Theory & Some Prereg.

V) Geometry

VI) Structure Theory & The meat.

Oppendix

- i) Questions
- ii) Explicit Examples
- in) Bib.

Main Ref! Analysis on Lie Groups with Polynomial Growth-Dungey, ter Elst, Robinson *Groups are always connected and often simply connected.

I) Setting

(G, X, Sp.d)

G= a Lie group

X = {x, ..., xm} = a Hormander basis

du = Haas measure

da= Carnot - Carathéodory (cc) - metric induced

by X.

Group of Polynomia (Growth

Let Br = cc-metric ball centered at eacy
of radius r

1 Br 1 = du-volume of Br

() () is a GoPG (->] DEIN, c, C>O s.t.

cr D = 1 B, 1 = Cr P, r ≥ 1.

D does not depend on the choice of \overline{X} (hence on m = #X nor da) 4) D is intrinsic to 9.

Examples:

- i) compact groups and nilpotent groups are GopG.
- ii) Non-unimodular always have exponential
- iii) PG => unimodular but unimodular ≠> PG

 iv) Non-Compact semi-simple Lie groups are
 unimodular but of expinential Growth.

 v) Harmonic AN groups have expunential growth.

II) Key Features

1) Group action GDG constrains volume growth
2) May study global properties of G using
heat equation methods $L = \partial t \qquad \rightarrow \qquad |h_{t}| \leq t^{-\frac{1}{2}} |B_{FF}| = \qquad , t > 0$ sub-Laplacian ||h_{t}||_{L^{p}} \(\tau \ t^{-\frac{1}{2}} |B_{FF}| = \qquad , t > 0 3) Natural setting to study complex wefficient invariant and order subelliptic operators on 4) Rich structure theory: $G = M \times Q$, $Q \sim Q \times Q = nilshedow$ Cpt solvable nilpotent, diffeo. to Q. - Gom> "cylindrical manifold" MXQN m - Heat equation analysis ~ Tox IR" - Hon Gm) Hon Qu 2nd order invariant A governs asymptotics subelliptic of H. Uses homogenization theory.

- K, R semigroup Kernels for H, H

L) $1K_t(mq) - R_t(q) 1 \pm t^{-1/2}$

III) Some Results

Heat Kernel Estimates: Proposition (Saloff-Coste, Varopolous) Ga GolG: X= {x,..., xm} = Hirmander basis he = heat Keinel of L-de = TXi2-De = 0 ht(x) 2 |Bit | e t, (t, x) e R, oxG Soboleu Inequality Theorem (Varapolous) Ga GoPly d= local dimension Bring of for olice D= dimension at a Bri- 1 for 121200 « EIN, 15P < 0, n ∈ [d, D], ap < n, q = n-ap 4) Infla ≤ clifly, a, fecoco 11flp, = 11flp, 11flp, = Zi=11Xiflp, 11xiflp, x-1

Note dim G & d but d = D need not hold

Trudinger Inequality
Theorem (Saloff-Caste)

C7, d, D as above

16, 200, exped or exp = D

L> 3 c>0 s.t.

Sa exp([f(x)/c||f||_{p,q}]^{p_1}) dx & clsl

Y fe (50(si), si (g open.

Ol vo harmonic anglysis results en multipliers + Riesz Transfors etc.

D) Basic Lie Theory

G: a Lie Group • The maps $(g,h)\mapsto gh$ and $g\mapsto g'$ are smooth Often $G\cong 12^{N}$, (at least locally) $gh=(f(g,h),...,f_{N}(g,h))$

- · Cl measure u on G is called left-invariant on

 G provided

 u(gh)= u(h) \quad \quad
- Every Lie group & has a canonical left-invariant measure called the left black measure up satisfying
 - is a Borel measure

 is left invariant

 KCG cpt -> \mu(K) <\iii

 auter regular: \mu(SI=inf\{\mu(U): SCU, Uapen\}

 inner regular: \mu(U)= sup\{\mu(K): KCU, Kqt\}

- o The right Hour measure up is similarly defined. · pr and up are unique up to scaling · If up = u, then G is called unimodular g: a (finite dimensional real) Lie algebra

 • cg \approx IR^N and cy has an alternating

 bilinear map (gxg -> cg; (X,Y) -> [X,Y]

 (called a Lie bracket) which satisfies · [a×+6/, Z] = a[x, Z] + 6[x, Z] [X, aY+bZ] = a[X,Y] + b[X,Z]· [x, x]= o ([x, y]=-[y, x]) · Jacob: identity:
- [x,[7,7]]+[Z,[x,7]]+[Y,[Z,x]]=0Exercise: (g,[,]) is associative iff it is 2-step nilpotent or abelian

Example $s(n, 1P) = n \times n$ real matrices $A \le trA = 0$ and [A, B] = AB - BA, $A_B \in s((n, 1P))$

Vector Fields On 12": X= Z; a(x) dx, First order differential X(12") = Vector fields on 112" La commutator is a Lie bracket: [X,Y]u=X(Yu)-Y(Xu) $X,Y\in\mathcal{H}(R'),u\in\mathcal{C}^{2}(R')$ (XCR), [,]) is a Lie algebra. Example: $X = x \partial_x - y \partial_y$ on \mathbb{R}^2 $\times \sim (x, -y)$

- There are special v.f.'s which respect the group structure on G.
- o Let Lg: G→ G denote left multiplication: Lg(h) = gh.
- - · Let XL(G) = space of left-invariant vector fields.
 - · Olso a Le algebra W/ [,]= commutator

o Let $g = \overline{leg}$ Ly $J \in g$ nm $X_g = (dl_g)_e v \in \overline{lg} G$ Ly $X \in \mathcal{X}_L(G)$, $X : G \to TG$ $X_g u = (dl_g)_e v(u) = \mathcal{F}_{l_g} u \circ l_g \circ \gamma(t)$ $\gamma(o) = e_1 \gamma'(o) = v \in \overline{leg}$

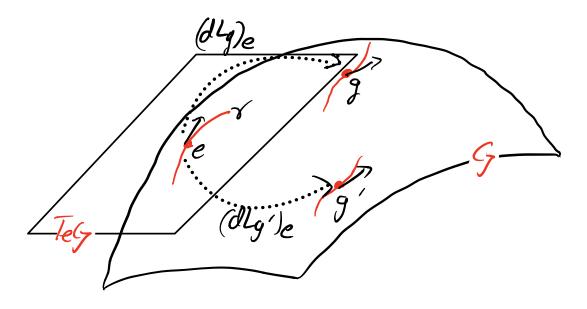
o N→X is a Lie Algebra isomorphism

(y→XL(G)

• g is given the bracket

[v, w] \(\text{L}\times_{v}\times_{w}\)

\(\text{L}\times_{v}\times_{w}\times_{w}\)



* Short hand: cy = Lieg -> cy is the Lie algebra of G.

Key point: Ut may study of or XL(G)

[a_{i_1} , [a_{i_2} ,...[$a_{i_{n+1}}$, a_{i_n}]], $i_j \in \{1,...,d'\}$ $n \leq r$ span g. The smallest r is called the rank of g with respect to a_1 ,..., $a_{d'}$

· In general: of may have multiple algebraic bases with different ranks.

Linear basis: usual linear algebra basis.

- · $a_{1},...,a_{d'}$ = algebraic basis, write $A_{1},...,A_{d'}$ = corresponding left-invariant vector fields. (Ad)g = d Lyle ad.
- "We may call Air. Ad' or air ..., ad' an algebraic basis.

Example: $H=1/2^3$ with group law $(x,y,t)(a,b,s)=(x+a,y+b,t+s+\frac{1}{2}(ya-xb))$ has left invariant vector fields

 $X = \partial_x + \frac{1}{2} y \partial_t, Y = \partial_y - \frac{1}{2} x \partial_t, T = \partial_t$ which satisfy [X,Y] = T.

In particular, $X_{(n,y,t)=e}$, $Y_{(n,y,t)=e}$ = EH form an algebraic basis.

H= Heisenberg Group ~ is a GoPG

Example: on 1122: X = dx, Y = x dy

[x, y] = dy

x, x, [x, y] span 112 at

each point

s X, y not invariant under a Lie group

product.

Sub-Laplacian On 112^N : $X_j = \partial x_j \longrightarrow Laplacian = \Delta = \sum_{j=1}^N X_j^2$ On G: A, ..., Ad' m) sub-Laplacian = L= \(\bar{\gamma}_{j=1}^d A_i^2\)

Note: L is not canonical in general

L is a 2nd order left-invariant differential opera tor L(uolg) = (Lu)olg tg & G · Play analoguous role as S · Cormon PDEs to study: L=0 (harmonic functions)

L=f (Poisson's Equation)

L=dt (Pleat Equation)

L=idt (Schrödingers Equation) o More generally: On 112": Consider operators L = Zij=1 aij dzj dzj , aij EIR $A = (a_{ij}), A \ge \mu I$ On G: H=-Z;=, CKEAKAR, CKEEC Re (CK) Ke 3 m I, m >0. Lo Ha C-coefficient 2nd order left-invar.

2nd order operator.

V) Geometry

Then de(x,y) = inf 10/8(4) dt = "length of shortest path connecting x to y"
measures distance according to this constraint. 4) Specifying I introduces a constrained non-Euclidean geometry on 12" Example

Vector field Defined Length Metric G=Lie group, $G = Lie G_{\eta}$ $a_{1},..., a_{J} = Linear$ basis for G $\exists \gamma : \epsilon o_{1} J \rightarrow G$, $\gamma \omega = g$, $\gamma (II = h$, $\alpha bs. cont.$ and $\tau_{K} s.t.$ $\gamma'(t) = \sum_{K=1}^{d} \gamma_{K}(t) A_{K} |_{\gamma(t)} (a.e.)$ The velocity vectors of y are linear combinations of {Ax/x(t)} for a.e. tElo, B. Ly Define a distance $\int_{\chi(l)=h}^{\infty} d(g,h) = \inf_{\chi(l)=h}^{\infty} \int_{\kappa}^{\infty} (\sum_{\kappa=l}^{\infty} \chi_{\kappa}^{2}(t))^{1/2} dt$ = "length of shortest path h+3g" Elliptic Modulus: 191 = d(q,e) ·d is left-invariant · All elliptic moduli on 9 are equivalent: (change of basis arguement) Of lobal and local geometry independent of linear basis.

Now consider a, ..., $a_{d'}$ = algebraic basis to can still define a distance (despite Why? A,..., Ad satisfy Hörmander's d'ed condition (due to left translation): d'Edimy) Allgo, Ad lg and their commutator of length & r (= their rank) span Ly \$9 & G. Lo, 17-> G, g+sh, abs. cont. and γ_{κ} s.t. $\gamma'(t) = \sum_{k=1}^{d} \gamma_{\kappa}(t|A_{k}|_{\gamma(t)} \quad (a.e.)$ Note: velocity of y is constrained to span { $A_k: k=1,...,d'$ } Subelliptic distance $d(g,h) = \inf_{\substack{\gamma(0) = g \\ \gamma(l) = h}} \int_{\zeta} \left(\sum_{\kappa=1}^{d} \gamma_{\kappa}^{2}(t) \right)^{1/2} dt$ a.K.a.: Carnot-Carathéodory metric or Control distance Subelliptic modulus: |g| =d (g,e) If a, ..., ad ~> d (c,), a, ..., ad ~, ad ~> d (c,) L) d(:1 = d'(:1), 1.1 = 1.1' More paths for linear basis

Proposition 1-1= subelliptic modulus for alg. basis of rank r; 1-1= elliptic modulus $4 \exists c > 0$: $c^{-1} |g| \leq |g| \leq |g| \leq |g| \leq |g|$ vank |e| > 1 - 1 and |e| = 1 not locally equivalent.

Proposition (1,11 as above. L) $\exists S>0, C>0: c^{-1}g_1 = |g_1|' \leq c|g_1, g \in G, |g_1| \geq S$ All moduli are equivalent outside a compact set.

Local Growth: Fix an algebraic basis $a_1, ..., a_d'$. $|\cdot|', d'(\cdot, \cdot) = corresponding modulus and distance.$

Bp'= {g < G : 191 < p}, V'(p) = 1Bp' | = volume

Proposition $\exists D' \geq d = \dim(q, C \geq 0, c \geq 0) \leq s. \ell.$ $c \rho^{D'} \leq V'(\rho) \leq C \rho^{D'}, \rho \in C0, IJ.$

D'= local dimension wrt a1, ~, a0

Thr 314 2

D'depends on bossis and but there is a maximal local dimension.

Computing D':

in term of Hausdoff

cg' & span {a_1,...,a_d'}

meas.

G' & span {a_1,...,a_d', commutators w/order & k'}

Ls cg' c cg' c ... cg' = g

Set D' = g', choose D' s.t. cg' = D' D' D ... D' f'

Ls

D' = \(\tilde{\text{Z}}_{k=1} \) k dim D' k

d = \(\tilde{\text{Z}}_{k=1} \) dim D' k

Equivalence of 1.1' away from ecg Lo global Growth is intrinsic 4 (growth of pt > VCp) independent of basis.

Juo Possibilities: Dinension of a.

() $\exists D \in |N \geq 0|$ and $f(C) \geq 0$ s.t. $cp^{D} \notin V(p) \notin Cp^{D} \longrightarrow Group of Polynomial Growth$ 2) $\exists \lambda, \mu > 0, c, C > 0 s.t.$ $ce^{N} \notin V(p) \notin Ce^{N} \longrightarrow Group of exponential Growth$

Exercise: I G, G2 eve connected groups. I G, has polynomial growth and G2 has exponential growth. Show that G, xG2 has exponential growth.

Proposition all nonunimodular groups are
of exponential growth

Proof $\Delta = \text{modular function}$ $\Delta =$

Proposition

G= simply connected and nulpitent dim G=d cy = Ive G, {gk} = lower central series 9 = 40/20 0 /r., 9 = 1,09 KH. (5) $D = \sum_{k=1}^{6} k dim \, b_k = dim. \, at infinity.$ $D \ge d$ and D = d; iff $G = IR^d$.

II) The Nilshadow and Structure Theory Assume G is simply connected by passing to its universal covering group. In general: a GofG is not even homogeneous Ci.e., no dilation structures). Goal: Suitably approximate a GoPly Go by one which is stratified. lwo paths: ** Nilshadow + contractions: G=MXQ=noted GN=MXQN M=Levi subgip, cpt, sim. con., Q=rodical=largest solvable subgra a GoPly, sin. con. Qn=nilshadow of Q =mnfed Q a GoPG, nilpotent grp law = modification of Q's Now use contractions of N.R.S. to approximate QN by a stratified grp.

2 Group quotien t+ Nolshadow: G=G/H, where G is a larger grp, whose radical Q has a stratified nilshadow. G=MXQ &N is stratified Structure Theory on cj=real Lie algebra Ideal: a subsp. icg: [g,i] ci Subalgebra: a subsp. h cg: [h,h]ch
i.e., h is a Lie algebra Solvable: $g^{(k)} = cy, g^{(k+1)} = [cy^{(k)}, cy^{(k)}]$ $\{cy^{(k)}\} \stackrel{d}{=} \text{ Derived series.}$ $S \stackrel{d}{=} \text{ Kel N} : cy^{(k)} = \{o\} \stackrel{d}{\longrightarrow} cy \text{ is solvable}$ Radical: the unique solvable ideal 9CG containing every other solvable ideal. Semisimple q: q = {0} [q,q]=q Nilpotent: $g_1 \triangleq g_1 g_{K+1} \triangleq [g_1 g_K]$ $\{g_K\} = lower central series$ $\{g_{K+1}\} = \{g_{K+1}\} = \{g_1\} \neq (g_{K+1}) = \{g_1\} \neq (g_{K+1}) = \{g_1\} \neq (g_1) = \{g_2\} \neq (g_2) = \{g_1\} \neq (g_2) = \{g_2\} \neq (g_2) = \{g_1\} \neq (g_2) = \{g_1\} \neq (g_2) = \{g_2\} \neq (g_2) = \{g_1\} \neq (g_2) = \{g_1\} \neq (g_2) = \{g_2\} \neq (g_2) = \{g_1\} \neq (g_2) = \{g_1\} \neq (g_2) = \{g_1\} \neq (g_2) = \{g_2\} \neq (g_2) = \{g_1\} \neq (g_2) = \{g_2\} \neq (g_2) = \{g_2\} \neq (g_2) = \{g_2\} \neq (g_2) = \{g_1\} \neq (g_2) =$

Graded: $c_f = \bigoplus_{k \geq 0} h_k \omega / all but finitely$ many 0 and $[h_k, h_j] < h_{k+j}$.

Stratified: of graded and 17, generates of; i.e., of has an algebraic basis contained in 1/1.

Nilradical: the unique nilpotent ideal

NCG containing every other nilpotent ideal.

ncq, n = nilradical(q)

Levi subalgebra: a semisimple subalgebra m c cj: cj = m@cj as v. spaces always exist

Every of decomposes into a solvable and senisimple part.

Udjoint representation:

g matria is q = no Rpotent ad: (9 > End(cy) ad surjective? $ad X \triangleq [X, \bullet]$.

Ado Thm

adX(Y) = [X,Y]X.YEJ

Nilpotent map: A: y-sy. &] n & N: 1 = o => A nilpotent.

Semisimple map: Big > cg s.t. each B-invariant subspace V (BUCV) has a complementary B-invariant subspace W (cg=V&W).

Jordan decomposition: $\forall a \in cg \exists semisimple Scal : cg \rightarrow cg$, nilpotent N(a) s.t. ad a = Scal + N(a)LScal, N(a) J = 0.

and n. parts.

Semidirect product: g, h Lie algebras $z: h \rightarrow \text{End}(g), z[a,b] = [za,zb]$ $L, c_{Xz}h \triangleq (g \oplus h, [,]_z)$ $[(a,b),(a',b')]_z \triangleq ([a,a']_q + z(b)a' - z(b')a, [b,b']_h)$ *Levi decomposition $g = m \oplus q \rightarrow g = m \times q$.

On the group level Ga Lie group W/ G= Lie G. Call G X iff og is X, where X & { nilpotent, semisimple, etc }. Theorem G con, heg a subalg. 43! con. subgrp Hw/ n=Lie(H) Theorem & Grsim. con. q=m@q,mm>M, qm>Q Ls M, Q sim. con. and closed in Cy, MNQ= {e} and (y=MQ G=MXQ. M€ Levi subgrp, Q = radical 39:Q- Quf(M) (m, e) (n', e') = (m \p(9') n', 99') (m g'n'6/1,99/)

The Nilshadow

Vilshadow cg = Lie alg. cg = rad(g) n= nslvad(y) Sca) = s.s. part of ada by Jordan dec. Fix subsp. Dcq s.t. 5) 9 = 200n ii) Sco) v= [0] Such a v always exists Lastly, if $a \in G = m \oplus \vartheta \oplus n$, write a_{ϑ} for the component of a in ϑ . Lastly define the bracket $La_1bJ_N = [a_1bJ_1 - S(a_0)b + S(b_0)a_1$ subtract off the "s.s. part." The Lie algebra $(q, [a,b]_N)$ is called a nilshadow of q and denoted by q_N . It is nilpotent. o[,], extends to a bracket $[J_{n}] : g \times g \rightarrow g \Rightarrow c_{n} \leq (g, [J_{n}]) = semidirat$ $[J_{n}] : m = [J_{n}] = [J_{n}] = [J_{n}] = [J_{n}]$ $[J_{n}] : g \times g \rightarrow g \Rightarrow c_{n} \leq (g, [J_{n}]) = semidirat$ $[J_{n}] : g \times g \rightarrow g \Rightarrow c_{n} \leq (g, [J_{n}]) = semidirat$ $[J_{n}] : g \times g \rightarrow g \Rightarrow c_{n} \leq (g, [J_{n}]) = semidirat$ $[J_{n}] : g \times g \rightarrow g \Rightarrow c_{n} \leq (g, [J_{n}]) = semidirat$ [,], /nxq = [,]/nxa.

Inverting the Shadow Goal pass from of = mxq, and Gr = MxQv back to of = mxq and Gr = MxQ. Shadow gn = mxq, = direct product of Lie algebras (m, [,]g/m), (qn, [,]N). Twisted Lie Bracket: T:g-> End(g) a rep. on cy s.t. I(za)b)=0.
Then $[a,b]_z \triangleq [a,b] + z(a)b - z(b)a$ defines a Lie bracket on g. Write $g_z = (g, E, J_z)$. Theorem Choose m and & as before. Define the rep. of: cy, > End(g,) by o(n,g)(m',q') = (0, (adg m + S(q,))q') mem, $q \in Q$. Then $[,]_z = [,]_q$ and so $q = m \times q = (m \times q_N)_\sigma = (q_N)_\sigma$ oy is a twisted lie algebra of its

shadow

or "adds back" s.s. part which was semoved to define E, I, on 9,.
Twisted Products:

Lie grp shadows: Let $q = v \in P$ as before. Let $z_g(a) \triangleq -S(a_v)$ so that $[,]_N = [,]_Z = bracket$ on G_N^S $C_G^* G \Rightarrow End G$ descends to a hom. $G_G^* G \Rightarrow Aut(G)$ $T_G(expa)expb = exp(e^{-S(a_v)}b)$

GN = (G, Tg *) = semidirect shadow Let Ta = Tg/a. Us QN = (Q, To*) = nilshadow Lastly GN = M × QN (direct prod. of grps) is called the shadow of G. "Just as gowing was inverted by $cy = (cyn)\sigma$ G~>GN may be inverted. or cy → End(cy) descends to a hom. S: Gy -> Qut(G). Theorem Cy=MxQ=(MxQN,s*)

i) Questions

1) G a Lie group with inner product

(: :> on G = Lie G

() ((u,v)= (alg+)gu, (alg+)gv > , u,ve [g/g

is a left-invariant Riemann metric on G.

Q: G a GoP(g => << , >> a metric

with polynomoal growth?

Duc, >> relates to sub-Laplacians?

Guess: X = algebraic basis ul sub-Laplacian

L- Declare X orthonormal -> sub-Riemannan

inner product << , >> -> L relates to Lee, >>?

2) What about the Schrödinger equation $L = i\partial_t$ and the Schrödinger Kernel.

Ga GoPG => G=MXQ, M cpt, Q GoPG

=> heat Kernel behaves like that

on IR x II.

C) says things about Schrödinger Kernel?

- 3) What is the maximal local dimension of a given G.
- 4) Higher order Trudinger inequality?
- 5) Let Gira, Go be GoPG with dimensions at infinity Pi, ..., Dw. Q: is the dimension at infinity of Gix x x y N Di+-++ Dw?

ii) Explicit Examples

1) Let G be the universal covering of the group of Euclidean motions on the plane

Ls G is 3d, solvable and Goofg

Ls Every sub-Laplacian on G m Ind order operator on In u/ periodic coefficients.

og = Lie G -> {X1, X2, X3} a basis w/

[X1, X2] = X3, [X1, X3] = -X1, [X2, X3] = 0

of In x1 = Ccw rot. by x.

2) Example of non-unimodular group:

Group of affine transformations on 12:

G = {x \rightarrow ax \rightarrow a \rightarrow a \rightarrow 12 \left\{a \rightarrow 12 \right\{a \rightarrow 12 \rightarrow 12 \rightarrow 12 \right\{a \rightarrow 12 \rightarr

in) Bib

· An application of homogenezation theory to havronic sensys is on solvable Lie groups of polynomial growth. (1993)

Saloff-Coste · Chalgse sen les groupes de Lic à croissance polynomiale. (1990) · Sen la décroissance des puissances de convolution sur les groupes

· Onalysis en Lie Groups (1988)

Nagel-Ricci-Stein
"Harmonic Analysis and Fundamental Solutions
on Nilpotent Lie Groups (1990)