The Fundamental Theorem of Calculus

The main goal of this section is to state and use what is known as the fundamental theorem of calculus (FTOC).

Theorem. Suppose f is continuous on [a, b]. Then

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a),$$

where F is any antiderivative of f.

Thus, we see that in order to compute the definite integral $\int_a^b f(x)dx$, we need only find an antiderivative of f. The general procedure is to compute the indefinite integral $\int f(x)dx$, and then set the integration constant to C=0 to obtain an antiderivative

Typical examples

Example 1. Compute $\int_0^1 x + 1 dx$. We do the following computation

$$\int_0^1 x + 1 dx = \frac{x^2}{2} + x \Big|_0^1 = \frac{1}{2} + 1 - 0 = \frac{3}{2}.$$

 \triangle

Example 2. Compute $\int_1^b \frac{1}{2x} dx$

We find that

$$\int_{1}^{b} \frac{1}{2x} dx = \frac{1}{2} \int_{1}^{b} \frac{1}{x} dx = \frac{1}{2} \left(\ln|x| \Big|_{1}^{b} \right) = \frac{1}{2} \left(\ln|b| - \ln|1| \right) = \frac{1}{2} \ln|b|.$$

 \triangle

Example 3. Compute $\int_{-2}^{-1} \frac{1}{2x} dx$

We find that

$$\int_{-2}^{-1} \frac{1}{2x} dx = \frac{1}{2} \left(\ln|x| \Big|_{-2}^{-1} \right) = \frac{1}{2} \ln 2.$$

 \triangle

Examples with *u*-substitution

Example 4. Compute $\int_0^1 \frac{1}{(1+x)^2} dx$ We need to do a *u*-sub. We let u = 1+x, and so du = dx. Note that the bounds are now u = 1+0=1and u = 1 + 1 = 2. Then

$$\int_0^1 \frac{1}{(1+x)^2} dx = \int_1^2 \frac{1}{u^2} du = -u^{-1}\big|_1^2 = -2^{-1} + 1^{-1} = \frac{1}{2}.$$

 \triangle

Example 5. Compute $\int_2^B (x+3)^5 dx$.

 \triangle

Area between two curves

Theorem. Suppose f is nonnegative on [a,b]. Then $\int_a^b f(x)dx$ gives the area of the region enclosed by the graph of f, the x-axis, and the lines x=a and x=b.

Example 6. Compute the area enclosed by the curve $f(x) = e^x$, the x-axis, and x = 1 and x = 2. Since $e^x > 0$, we wish to find

$$\int_{1}^{2} e^{x} dx = e^{x} \Big|_{1}^{2} = e^{2} - e^{1}.$$

Theorem. Suppose $f(x) \ge g(x)$ on [a,b]. Then $\int_a^b f(x) - g(x) dx$ gives the area of the region enclosed by the graphs of f and g, and the lines x = a and x = b.

Theorem. Suppose f is continuous on [a, b] and a < c < b. Then

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

We will be concerned only with finding the area in the bounded region bounded by two curves. Given two continuous functions f and g, to find the area between these two curves, we have the following general scheme.

- 1. Find all x such that f(x) = g(x).
- 2. Find all bounded intervals where $f(x) \ge g(x)$ and find all bounded intervals where $g(x) \ge f(x)$ (e.g., use the constant sign theorem).
- 3. Let [a,b] be a general such interval. If $f(x) \geq g(x)$ on [a,b], compute $\int_a^b f(x) g(x) dx$. If $g(x) \geq f(x)$ on [a,b], compute $\int_a^b g(x) f(x) dx$.
- 4. Add up all such integrals.

Example 7. Find the area enclosed by the curves $f(x) = e^x$, g(x) = x, x = 1 and x = 2. We note that $e^x - x \ge 0$ on [1,2] and so we wish to compute

$$\int_{1}^{2} e^{x} - x dx = e^{x} - \frac{x^{2}}{2} \Big|_{1}^{2}.$$

 \triangle

 \triangle

Example 8. Find the area enclosed by the curves $f(x) = x^3$ and g(x) = x.

- 1. f(x) = g(x) when $x^3 = x$; i.e., when $x = \pm 1$ or x = 0.
- 2. By the following table

we conclude that f(x) - g(x) > 0, and so f(x) > g(x), on (-1,0) and f(x) - g(x) < 0, and so f(x) < g(x), on (0,1). These are the only bounded intervals of interest.

3. The area between the curves is thus given by

$$\int_{-1}^{0} f(x) - g(x)dx + \int_{0}^{1} g(x) - f(x)dx = \int_{-1}^{0} x^{3} - xdx + \int_{0}^{1} x - x^{3}dx = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

 \triangle

Example 9. Find the area enclosed by the curve $y = x^2 - 9$, the x-axis, and the lines x = -7 and x = 0. Here, our two curves are $f(x) = x^2 - 9$ and g(x) = 0.

- 1. f(x) = g(x) when $x^2 9 = 0$; i.e., when $x = \pm 3$.
- 2. By the following table

we conclude that f(x) - g(x) > 0, and so f(x) > g(x), on (-7, -3) and f(x) - g(x) < 0, and so f(x) < g(x), on (-3, 0). These are the only bounded intervals of interest.

3. The area between the curves is thus given by

$$\int_{-7}^{-3} f(x) - g(x)dx + \int_{-3}^{0} g(x) - f(x)dx = \int_{-7}^{-3} x^2 - 9dx + \int_{-3}^{0} -9 + x^2 dx = \frac{208}{3} + 18.$$

Δ

Example 10. Find the area enclosed by the curves $f(x) = \frac{2}{x}$ and g(x) = 1 when $1 \le x \le 4$.

- 1. f(x) = g(x) when $\frac{2}{x} = 1$; i.e., when x = 2.
- 2. By the following table

we conclude that f(x) - g(x) > 0, and so f(x) > g(x), on (1,2) and f(x) - g(x) < 0, and so f(x) < g(x), on (2,4). These are the only bounded intervals of interest.

3. The area between the curves is thus given by

$$\int_{1}^{2} f(x) - g(x) dx + \int_{2}^{4} g(x) - f(x) dx = \int_{1}^{2} \frac{2}{x} - 1 dx + \int_{2}^{4} 1 - \frac{2}{x} dx = \ln(4) - 1 + \log(4) - 2 = 2 \ln 4 - 3.$$

 \triangle

Example 11. Graph example done in class.

 \triangle