Differentiation

• Power rule: $\frac{d}{dx}x^a = ax^{a-1}$ for **any** constant a.

• Summation rule: (g+h)' = g' + h'.

• Scaling rule: $\frac{d}{dx}cf(x) = c\frac{d}{dx}f(x)$.

• Product rule: (gh)' = g'h + hf'.

• Quotient rule: $\left(\frac{g}{h}\right)' = \frac{g'h - gh'}{h^2}$.

• Derivative of e^x : $\frac{d}{dx}e^x = e^x$.

• Derivative of $\ln x$: $\frac{d}{dx} \ln x = \frac{1}{x}$.

• Derivative of a constant: $\frac{d}{dx}c = 0$ for all constants c.

• Chain rule: $\frac{d}{dx}h(g(x)) = g'(x)h'(g(x))$. You may also wish to memorize the other chain rules. However, all of those are derived from this chain rule; i.e., this single chain rule will always work. The only weird cases are

$$\frac{d}{dx}a^{f(x)} = f'(x)a^{f(x)}\ln a \qquad \text{and} \qquad \frac{d}{dx}\log_a|f(x)| = \frac{f'(x)}{f(x)\ln a}.$$

• Limit definition of the derivative: $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$. Know how to compute this limit for functions that look like x, x^2 , $\frac{1}{x}$ and $\frac{1}{x^2}$. Note that this include variations of such functions: e.g., x^2+2 , $\frac{1}{x-1}$, etc.

Note also that if the question asks to use the limit definition, use the limit definition. If you use any other method, you will not be given any credit.

Tangent lines

Know how to find the equation of a tangent line given a function f. In general, the tangent line of f through the point (c, f(c)) is given by $y_{tan} = f'(c)(x - c) + f(c)$. The questions are usually posed as, Find the tangent line of f at x = c.

1

Horizontal Asymptotes and limits at infinity

Make sure you can compute $\lim_{x\to+\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ for the following types of cases:

1. $f(x) = \frac{x^2 + x}{3x^5 + 2x - 1}$ (degree on bottom is larger).

2. $f(x) = \frac{-x^7 + 2x^3 + 1}{x^3 + x + 1}$ (degree on top is larger).

3. $f(x) = \frac{x^5 + 2x + 4}{2x^5 + 1}$ (degrees on top and bottom are equal).

4. Any of the previous types but with exponentials thrown in; e.g., $f(x) = \frac{e^{-2x} + x}{e^{-5x} + x}$.

Applications of the constant sign theorem

- Know how to find the critical points of a function.
- Know how to use the constant sign theorem to determine where a function is increasing or decreasing. That is, determine where f' > 0 or f' < 0.
- Know how to use the constant sign theorem to determine where a function is concave up or concave down. That is, determine where f'' > 0 or f'' < 0.
- Use the previous item to determine what are the inflection points.

Derivative tests

- Use the first derivative test to determine whether or not a critical point f'(c) = 0 is a relative extremum or not, and if it's a relative maximum or minimum if it's a relative extremum.
- Use the second derivative test to determine if a critical point f'(c) = 0 is a relative extremum, and recognize that if f''(c) = 0, then the second derivative test fails to tell you anything.

Reading a graph

This covers the graph type questions from the homework. Note that being good at this will help with curve sketching. Examples are: where f increasing, decreasing, concave up, concave down, extrema, where is f not differentiable, etc. Note that you may be given a graph of the function f or its derivative f''.

Where is a function not differentiable: This includes discontinuities, vertical asymptotes, pointy places, where the graph is vertical (and hence has a vertical tangent line), etc.

Curve sketching

Be able to know how to, when given a list of information about the function (e.g., where its derivative is positive, where f'(c) = 0, etc.), how to approximately sketch the corresponding graph.