3.3 The Derivative

Definitions

Definition 1 (The Derivative). If y = f(x), the derivative of f(x), denoted by f'(x) is defined to be

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

if this limit exists.

Note: you might see y', $\frac{dy}{dx}$, and $\frac{d}{dx}f(x)$ to mean the derivative.

Remark: If a function has a derivative at x = c we say the function is differentiable there. Remark: Recall that the derivative at a point gives the slope of the function at that point.

Concepts

Using the limit definition of the derivative

Example. Let f(x) = 5. Find it's derivative.

Example. Let $f(x) = x^2 + x + 2$. Find the derivative f'(x) at x = 3. Find the derivative of f'(x) at any value of x.

Example. Let $g(x) = \frac{1}{x}$. Find the derivative g'(x) at x = 2. Find the derivative of g'(x) at any nonzero value x.

Example. Let $h(x) = \frac{1}{x+1}$. Find the derivative h'(x) at x = 0. Find the derivative of h'(x) at any value of x with $x \neq -1$.

Example. Let $k(x) = x^{3/2}$. Find the derivative k'(x) at x = 0.

Finding the equation of the tangent line

Example. Let $f(x) = x^2 + x + 2$. Find the tangent line at (2, f(2)).

Example. Let $g(x) = \frac{1}{x}$. Find the tangent line at (c, f(c)).

Example. Let $h(x) = \frac{1}{x+1}$. Find the tangent line at (0, f(0)).

Example. Let $k(x) = x^{3/2}$. Find the tangent line at (0, f(0)).

Positive, zero, and negative derivatives

A derivative will either be positive, zero, or negative. We have the following situations:

- 1. Derivative is positive: positive slope, so function is increasing.
- 2. Derivative is negative: negative slope, so function is decreasing.
- 3. Derivative is zero: zero slope, so function is constant.

Differentiability implies continuity

Remark: If a function f(x) is differentiable at a point x = c, it is continuous at x = c. That is, if

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

exists, then

$$\lim_{x \to c} f(x) = f(c).$$

Remark: **COMMON ERROR TO AVOID**: Continuity does **not** implies differentiability. A function may satisfy:

- (i) f is continuous at x = c and not differentiable at x = c or
- (ii) f is continuous at x = c and is differentiable at x = c.

Note that this means if f is not continuous at a point, it is not differentiable at that point.

When derivatives fail to exist

The derivative of a function does not exist at x when

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

does not exist. There are at least two ways to see a function does not exist:

- 1. Graphically: cf. lecture.
- 2. Let f(x) = 1/x. Then f is not differentiable at x = 0; it isn't even defined here!

Derivatives and graphs

cf. lecture.

Necessary concepts to know

Here is a minimum list of concepts you should know.

- 1. Using the limit definition of the derivative to find f'(x)
- 2. Finding the equation of the tangent line.
- 3. Differentiability implies continuity.
- 4. When the derivative fails to exist
- 5. Using graphs to determine where functions do not have derivatives.
- 6. Using graphs to determine values of f'(x).
- 7. What does the sign of the derivative tell you?